A-36 ## 2-Magnon Peak in La_{2-x}Sr_xCuO₄ Observed with RIXS at the Cu K-edge D. S. Ellis¹, Jungho Kim¹, J. P. Hill², S. Wakimoto³, R. J. Birgeneau⁴, Y. Shvyd'ko⁵, D. Casa⁵, T. Gog⁵, K. Ishii⁶, K. Ikeuchi⁶, A. Paramekanti¹, and Young-June Kim¹ Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7 We present a comprehensive study of the temperature and doping dependence of the 500 meV peak observed at q=(π0) in resonant inelastic x-ray scattering (RIXS) experiments on La₂CuO₄. The intensity of this peak persists above the Néel temperature ($T_N=320K$), but decreases gradually with increasing temperature, reaching zero at around T=500K. The peak energy decreases with temperature in close quantitative accord with the behavior of the two-magnon B1g Raman peak in La₂CuO₄ and with suitable rescaling, agrees with the Raman peak shifts in EuBa₂Cu₃O₆ and K₂NiF₄. The overall dispersion of this excitation in the Brillouin zone is found to be in agreement with theoretical calculations for a two-magnon excitation. Upon doping, the peak intensity decreases analogous to the Raman mode intensity and appears to track the doping dependence of the spin-correlation length. Taken together, these observations strongly suggest that the 500 meV mode is magnetic in character and is likely a twomagnon excitation. ²Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY ³Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan ⁴Department of Physics, University of California, Berkeley, CA 94720-7300 ⁵XOR, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 ⁶Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Hyogo 679-5148, Japan